Mathematical modelling in biology and data science

Lisa Maria Kreusser

University of Bath

PiWORKS Seminar October 26, 2021

Institute for Mathematical Innovation

I am an applied mathematician.

• My position: Lecturer (Assistant Professor) in the Department of Mathematical Sciences, University of Bath

• My research: Mathematical methods in partial differential equations, mathematical and numerical analysis with applications in biology and data science

My Research

CV in short

- 10/2010–07/2013: B.Sc. in Mathematics (Minor: Physics), University of Kaiserslautern, Germany.
- 08/2013–09/2015: M.Sc. in Mathematics, University of Kaiserslautern, Germany.
 - **Study abroad** (08/2013–12/2013): National University of Singapore, Singapore.
 - Research internship (01/2014–04/2014): Imperial College London, UK.
- 10/2015-09/2019: PhD in Mathematics, University of Cambridge, UK.
- 10/2019-07/2021: Research Fellow in Mathematics, Magdalene College, University of Cambridge, UK.
- since 08/2021: Lecturer (Assistant Professor), Department of Mathematical Sciences, University of Bath, UK.

Collective behaviour in nature¹

(a) Marching locusts (b) Colony of army ants (c) School of fish

Lisa Maria Kreusser (Bath) Modelling in biology and data science October 26, 2021

General setting for isotropic pattern formation

• Large system of interacting particles

Interaction forces

- Short-range repulsive
- Long-range attractive
- Radially symmetric
- Alignment along the distance vector
- $\Rightarrow F(r) = f(|r|)r = -\nabla W(r)$

Modelling in biology and data science

Isotropic interaction model²

• Microscopic model:

$$\frac{\mathrm{d}x_j}{\mathrm{d}t} = \frac{1}{N} \sum_{\substack{k=1\\k\neq j}}^{N} F(x_j - x_k),$$
$$F(r) = -\nabla W(r) = f(|r|)r$$

Associated continuum model:

 $\rho_t + \nabla \cdot (\rho u) = 0, \qquad u = -\nabla W * \rho$

• Minimization of interaction energy

$$\mathcal{W}[\rho] = \frac{1}{2} \int_{\mathbb{R}^2} \left(W * \rho \right)(x) \rho(\mathrm{d}x)$$

²Albi, Balagué, Bertozzi, Burger, Carrillo, Di Francesco, Fellner, Figalli, Fornasier, James, Kolokolnikov, Laurent, Mellet, Raoul, von Brecht, Tadmor, Toscani, Uminsky, ARC

- Large databases required for fingerprint identification algorithms
 - Difficulty: collecting databases of real fingerprints
 - Solution: Create synthetic fingerprint images
- Modeling formation of fingerprints
- Challenging generalization of popular class of mathematical models

- Large databases required for fingerprint identification algorithms
 - Difficulty: collecting databases of real fingerprints
 - Solution: Create synthetic fingerprint images
- Modeling formation of fingerprints
- Challenging generalization of popular class of mathematical models

- Large databases required for fingerprint identification algorithms
 - Difficulty: collecting databases of real fingerprints
 - Solution: Create synthetic fingerprint images
- Modeling formation of fingerprints
- Challenging generalization of popular class of mathematical models

- Large databases required for fingerprint identification algorithms
 - Difficulty: collecting databases of real fingerprints
 - Solution: Create synthetic fingerprint images
- Modeling formation of fingerprints
- Challenging generalization of popular class of mathematical models

Three phases of fingerprint development

- Growth forces in epidermis and shrinkage of volar pad create compressive stress (modeled by Kücken, Newell: 2004, 2005)
- Rearrangement of Merkel cells from a random configuration into parallel ridges along the lines of smallest compressive stress
- Primary ridges are induced by the Merkel cells.

³D.-K. Kim, K. Holbrook, *The appearance, density, and distribution of Merkel cells in human embryonic and fetal skin*, J. Invest. Dermat., 1995, **D** + (**B** + (**E**) + (**E**)

Formulation of the anisotropic microscopic model⁴

- Extension of the isotropic microscopic model resulting in an anisotropic interaction model
- Large number of interacting cells
- Interaction forces F
 - short-range repulsive
 - long-range attractive
- Underlying stress field T influencing forces

Mathematical formulation:

$$\frac{\mathrm{d}x_j}{\mathrm{d}t} = \frac{1}{N} \sum_{\substack{k=1\\k\neq j}}^{N} F(x_j - x_k, T(x_j)), \quad j = 1, \dots, N$$

⁴M. Kücken, C. Champod, *Merkel cells and the individuality of friction ridge skin*, Journal of Theoretical Biology, 317 (2013), pp. 37-72

Lisa Maria Kreusser (Bath) M

Modelling in biology and data science

October 26, 2021

Contributions: Synthetic Fingerprint Images ^{5 6 7}

Mathematical and numerical analysis

- Analysis of interaction model without simplifications requiring new mathematical methods
- Rigorous limit
- Pattern formation (form, stability)
- Patterns and parameter dependence

$$\begin{aligned} \frac{\mathrm{d}x_j}{\mathrm{d}t} &= \frac{1}{N} \sum_{k=1}^N F(x_j - x_k, T(x_j)), \quad k = 1, \dots, N \\ &\downarrow \\ \partial_t \rho + \nabla_x \cdot \left[\rho \left(F \left(\cdot, T(x) \right) * \rho \right) \right] = 0 \end{aligned}$$

Contributions: Synthetic Fingerprint Images ^{5 6 7}

Mathematical and numerical analysis

- Analysis of interaction model without simplifications requiring new mathematical methods
- Rigorous limit
- Pattern formation (form, stability)
- Patterns and parameter dependence

Applications

- Proposed a bio-inspired model
- Realistic fingerprint simulations
- Real-world phenomena

$$\frac{\mathrm{d}x_j}{\mathrm{d}t} = \frac{1}{N} \sum_{k=1}^{N} F(x_j - x_k, T(x_j)), \quad k = 1, \dots, N$$
$$\downarrow$$
$$\partial_t \rho + \nabla_x \cdot [\rho \left(F(\cdot, T(x)) * \rho\right)] = \mathbf{0}$$

Fingerprint simulations for the macroscopic model

Lisa Maria Kreusser (Bath)

Modelling in biology and data science

October 26, 2021 1

Characteristics of models for collective behaviour⁸

Biological models

- Large number of interacting particles
- Interactions over short distances
- Complex patterns and stationary states such as flocks or clusters

From biology to label propagation

- Apply ideas from **collective dynamics** in the context of labeling and classification problems
- Semi-supervised learning: large number of data points, some of them being already correctly matched to labels

⁸Albi, Balagué, Bertozzi, Burger, Carrillo, Di Francesco, Fellner, Figalli, Fornasier, James, Kolokolnikov, Laurent, Mellet, Raoul, von Brecht, Tadmor, Toscani, Uminsky, ARC

Lisa Maria Kreusser (Bath)

e Oct

Graph-based classification

Given n + m data points $V = \{X_1, \ldots, X_{n+m}\}$:

- Determine similarity measure $w_{i,j}$ between data points X_i and X_j
- Graph construction based on similarity measure
- Partition of the graph using biological models

Graph Laplacian methods

Given graph G = (V, w):

• Graph Laplacian

$$\Delta_G u_i = \sum_{j \in V} w_{ij}(u_i - u_j), \quad i \in V$$

Generalised continuum Laplacian

$$\mathcal{L}(u) = \frac{1}{\rho^p} \nabla \cdot \left(\rho^q \nabla \left(\frac{u}{\rho^r} \right) \right)$$

for distribution of points ρ with fixed parameters $p, q, r \in \mathbb{R}$ with particular choice (p, q, r) = (1, 2, 0)

• Analysis of eigenvalues and eigenfunctions in suitable scaling limits: Garcia Trillos and Slepcev, Hoffmann et al., ...

Lisa Maria Kreusser (Bath) Modelling in biology and data science

Mathematical formulation of the biological model

- n data points with $m \ll n$ correctly labelled
- Information propagation of correct labels to unlabelled points
- Characteristic $u_i = u_i(t)$ of agent *i* for i = 1, ..., n
- Interaction radius $\epsilon > 0$
- Influence $w_{ij} = \eta(x_i, x_j, \epsilon)$ that agent *i* has on *j*
- Interacting system:

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = \sum_{j \neq i} w_{ij}(u_j - u_i) \text{ for } i = 1, \dots, n$$

 Includes well-known models, e.g. Cucker-Smale model and Krause's opinion formation model

We provide rigorous proofs for

- Derivation of the continuum model (limit as $n \to \infty$)
- Existence and uniqueness of solutions
- **Consistency of labelling:** Stationary solution *u* to macroscopic model has a similar structure as the given probability measure
- Maximum principle: Solutions can attain their maximum and minimum on the parabolic boundary only
- Dependence on edge weights and regularisation:
 - Edge weights w_{ij} and parameter γ correspond to rescaling in time
 - $\Gamma\text{-convergence result}$ as regularisation parameter $\kappa\to\infty$

⁹LMK, M.-T. Wolfram. *On anisotropic diffusion equations for label propagation*, arXiv:2007.12516

Dependence on initial data

(a) Zero initial data

(b) Normally distributed initial data

(d) Uniformly distributed initial data

Figure: Dependence on label location for hom. initial distribution and their stationary solution for the microscopic discretisation.

Two moons: Initial and final distribution

(a) Initial distribution

(b) Final distribution

20 / 25

Figure: Initial and final distribution at T = 25 using the parameters $\gamma = 1.0$ and $\kappa = 10$. We assume that all points defining the convex hull are correctly labelled.

Two moons: micro- and macroscopic

(a) Microscopic dataset

(b) Final macroscopic distribution

21/25

Figure: Final distribution at T = 25 using the parameters $\gamma = 1.0$ and $\kappa = 10$ for the microscopic and macroscopic models. We assume that all points defining the convex hull are correctly labelled.

• MNIST dataset:

1797 samples of digital digits

- Labels *L* = {0,...,9}
- Weights $w_{ij} = \mathbb{1}_{d_{\mathcal{W}_2(X_i, X_j)} \leqslant \overline{c}} d_{\mathcal{W}_2(X_i, X_j)}^{-1}$
- Choose 320 samples, determine weight matrix, assume that the first 40 digits are correctly labelled and apply to

$$\frac{\mathrm{d}u_i}{\mathrm{d}t} = \gamma \sum_{j \neq i} w_{ij}(u_j - u_i) - \kappa W'(u_i),$$
$$i = 1, \dots, n$$

	_				-			_							_
1	1	١	۱	١	1	1	(/	1	۱	1	1	۱	1	1
2	າ	2	2	ð	ð	2	2	ደ	2	2	2	2	2	2	2
З	3	3	3	3	3	3	3	З	З	3	З	3	3	3	з
4	4	٤	ч	4	4	ч	ч	¥	4	4	4	9	μ	¥	4
5	5	5	5	5	s	5	5	5	5	5	5	5	5	5	5
6	G	6	6	6	6	6	6	ь	6	4	6	6	6	6	b
Ŧ	7	7	٦	7	7	ч	7	2	η	7	7	7	7	7	7
8	Т	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	٩	9	9	9	9	٩	9	٩	η	٩	9	9	9	9	9

- 84.285% of the labels assigned correctly
- Performance improvable by fine-tuning the parameters

October 26, 2021

- Model development
- ② Continuum models: Derivation of model in the limit n → ∞.
- Quantitative behaviour: Analytic results to characterize the behaviour of solutions to the continuum problem.
- Computational experiments illustrating and exemplifying the structure of solutions to the micro- as well as macroscopic equation

PhD opportunities in Bath

EPSRC Centre for Doctoral Training in Statistical Applied Mathematics at Bath

- 10-15 fully-funded PhD studentships available annually for four year programme
- Fusion of applied mathematics, numerical analysis, probability, statistics
- Distil industrial and interdisciplinary problems into mathematical ones, and solve them
- Choose and shape your own research direction according to your interests
- Diversity of cohort in an inclusive environment an essential component ٠

You'll need:

- Good degree with high mathematical content
- Some research or professional experience

- Inverse problems and compressed sensing
- Efficient numerical algorithms and scientific computing -
- Data assimilation and uncertainty quantification
- Hybrid applied and stochastic modelling
- Spatial statistics and Bayesian networks
- Probability, statistical physics and applied analysis
- Mathematical machine learning

- Environmental modelling
- Drug safety and development
- Advanced materials
- Remote sensing
- Nuclear safety
- Fluid dynamics

More information:

www.bath.ac.uk/samba

< 47 ▶

Thank you very much for your attention!

More information: https://people.bath.ac.uk/lmk54/ Email: lmk54@bath.ac.uk

Lisa Maria Kreusser (Bath) Modelling in biology and data science

October 26, 2021