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Information security

Information security is concerned with the safe and private
transmission and storage of data.

Motivating questions include:

How can a message be sent so that we can detect whether it
has been changed during transmission?

If we detect that a change has occurred, can we recover the
original message - and if so, how?

How can we encrypt messages/data so that they cannot
feasibly be decrypted by anyone other than the intended
recipient?

. . . and many more.
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Manipulation detection

In this talk, we consider an encoding system and how to design it
to minimise the chances that an undetected change can occur.

Applies to various situations:

message transmission which is subject to attack

storage device which is subject to tampering

We will be thinking in terms of the message-sending scenario.

It is helpful to model the situation as a “game” between an
encoder and an adversary who is trying to “cheat” the encoder.

Our focus is on algebraic manipulation detection (AMD) codes.
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AMD code model

We will have:

Set S of plaintext sources (the messages)

Encoded message space G (finite group, written additively)

Encoding function E (possibly randomized) maps source
s ∈ S to some g ∈ G

For each source s ∈ S , subset A(s) of G is the set of valid
encodings of s

Unique decodability: A(s) ∩ A(s ′) = ∅ if s 6= s ′,
i.e. the sets of encodings do not overlap
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Diagram

Sources Encoded Message
Space G

sm

A(sm)

s2

A(s2)

s1

A(s1)

g
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The “game”

AMD code

Adversary: chooses a value δ ∈ G \ {0} (their “manipulation”)

Encoder: chooses source s ∈ S

Encoder: s encoded by E to some g ∈ A(s)

Adversary: g is replaced by g ′ = g + δ

Adversary wins if g ′ ∈ A(s ′) for some s ′ 6= s

“The adversary wins if they succeed in shifting the group element
g into an element g + δ that’s an encoding of a different source”
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Diagram

Sources Encoded Message
Space G

sm

A(sm)

s2

A(s2)

s1

A(s1)

g

g + δ

If message s1 is sent and encoded to g , it will be incorrectly
decoded to s2 after this manipulation. In this case, adversary wins!
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Imaginary real-life example!

Kim sends message to Robin saying where to meet.
Adversary manipulates the encoded message by adding δ.

G

Vienna

Paris

London

Geneva g

g + δ

Kim sends“Geneva” which is encoded to g , but after manipulation
Robin will receive g + δ and decode this to “London”.
Adversary wins: Kim and Robin don’t meet!
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Combinatorial model

The AMD “game” can be modelled as a set-up in combinatorics.

We model the sender’s choice of message probabilistically.

Adversary chooses δ ∈ G \ {0}
Pick a set Ai uniformly at random (source)

Then pick an element di ∈ Ai uniformly at random (encoding)

Adversary “wins” if di + δ ∈ Aj for some j 6= i

Adversary wins if δ occurs as a difference between our element in
Ai and some element in Aj .

Need to look at the differences between elements of Ai and Aj .
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Difference notation

Suppose we have a disjoint family of subsets A1, . . . ,Am of G

For a fixed i , the differences between the elements of Ai are
called internal differences:

I (Ai ) := {x − y : x , y ∈ Ai , x 6= y}

For i 6= j , the differences between the elements of Ai and Aj

are called external differences:

E (Ai ,Aj) := {x − y : x ∈ Ai , y ∈ Aj}
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Ai
Ak

Aj

x

y

z

δ1

δ2

s

t
γ1

γ2

In this diagram,

δ1 and δ2 are internal differences in Ai

(x − y = δ1, x − z = δ2)

γ1 and γ2 are external differences out of Ai (to Aj ,Ak resp.)
(y − s = γ1, z − t = γ2)
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Ai
Ak

Aj

A`

γ

γ

γ

For a disjoint family of sets A1, . . . ,Am, define the number of times
a non-zero element γ occurs as an external difference out of Ai by

Ni (γ) = |{(x , y) : x − y = γ, x ∈ Ai , y ∈ Aj , j 6= i}|

In the example above, we show all occurrences of γ as an external
difference out of Ai , so Ni (γ) = 3 here.
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Success probability

Returning to our AMD code:

The probability that an adversary succeeds when they pick δ is

eδ =
1

m

(
N1(δ)

|A1|
+ · · ·+ Nm(δ)

|Am|

)
(1)

where |Ai | is the size of set Ai .

Source i picked with probability 1
m

Ni (δ) of the possible |Ai | encodings will lead to success for an
adversary who picks δ
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Which codes are best?

We are seeking AMD codes which are optimal (as good as possible
from the sender’s point of view).

We want the adversary’s chance of success to be as low as possible.

Optimality corresponds to: probability that an adversary succeeds
when they pick δ, is constant for all δ ∈ G \ {0}.

For these: adversary’s maximum success probability is equal to
their average success probability.
No choice of δ is better than any other!
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Our combinatorial problem

We have translated our requirements for an optimal AMD code,
into a combinatorial problem.

We would like:

a group G

a set A of disjoint subsets A1, . . . ,Am of G

such that the following property holds:

1

m

(
1

|A1|
N1(δ) + · · ·+ 1

|Am|
Nm(δ)

)
= constant (2)

for every δ ∈ G \ {0}

Sophie Huczynska University of St Andrews Combinatorics in Information Security PiWORKS talk



RWEDFs

Surprisingly, the set of combinatorial objects with this
property has not previously been named or characterised.

People have, however, looked at certain special cases.

We have called these objects reciprocally-weighted external
difference families (RWEDFs).

Definition

An (n,m; k1, . . . , km; `)-RWEDF is a collection of disjoint subsets
A1, . . . ,Am of an abelian group G , where |Ai | = ki for all
i ∈ {1, . . . ,m}, with the property that:

1

k1
N1(δ) + · · ·+ 1

km
Nm(δ) = `

for all non-zero δ ∈ G .
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Challenge: how to obtain such objects?

Consider which already-studied objects in combinatorics may
be useful

Develop new existence/non-existence results of our own

A special case:

If all the sets Ai have the same size, then the requirement
becomes

N1(δ) + · · ·+ Nm(δ) = constant

These have been studied: external difference families (EDFs).
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EDF example

Let G = (Z10,+); take A1 = {4, 7, 9} and A2 = {0, 2, 5}
Differences from A1 to A2 are
{4− 0 = 4, 4− 2 = 2, 4− 5 = −1 = 9,
7− 0 = 7, 7− 2 = 5, 7− 5 = 2,
9− 0 = 9, 9− 2 = 7, 9− 5 = 4}, ie {2, 2, 4, 4, 5, 7, 7, 9, 9}.
Differences from A2 to A1 are their negatives, i.e.
{1, 1, 3, 3, 5, 6, 6, 8, 8, 8}.
Union of all external differences=each nonzero element twice!

For δ = 1, the adversary’s success probability is

1

2

(
N1(δ)

|A1|
+

N2(δ)

|A2|

)
=

1

2

(
0

3
+

2

3

)
=

1

3

Same probability for any choice of δ 6= 0.
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Theoretical EDF construction

Construction

Let G be the additive group of GF (q), the finite field of order q,
where q is a prime power congruent to 1 mod 4.
Let A1 = {the set of squares in GF (q)∗}.
Let A2 = {the set of non-squares in GF (q)∗}.
Then {A1,A2} form a (q, 2; q−1

2 , q−12 ; 1)-RWEDF.

This is a special case of cyclotomic method - using multiplicative
subgroups of a finite field to make EDFs in its additive group.
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Examples of squares/nonsquares construction in GF (q)

Let q = 5; take A1 = {1, 4} and A2 = {2, 3}.
Differences from A1 to A2 are
{1− 2 = 4, 1− 3 = 3, 4− 2 = 2, 4− 3 = 1} = {4, 3, 2, 1}.
Differences from A2 to A1 are their negatives, i.e. also
{1, 2, 3, 4}.
Each nonzero element of (Z5,+) occurs twice as an external
difference.

So for any non-zero δ ∈ G , adversary’s success probability
equals

1

2

(
N1(δ)

|A1|
+

N2(δ)

|A2|

)
=

1

2

(
1

2
+

1

2

)
=

1

2
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What about RWEDFs which are not EDFs?

Now we would like to construct examples of RWEDFs which have
genuinely different set-sizes (i.e. are not EDFs).

Q: Do such things exist?

A: Yes!
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Examples of RWEDFs which are not EDFs

Example

Let G = Zk1k2+1. The sets

A1 = {0, 1, . . . , k1 − 1} and A2 = {k1, 2k1, . . . , k1k2}

form a (k1k2 + 1, 2; k1, k2; 1
k1

+ 1
k2

)-RWEDF.

Can prove: this give an AMD code whose success probability is as
small as possible (smallest `) for m = 2.
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Example

Take k1 = 3 and k2 = 4.
Then G = Z13, A1 = {0, 1, 2} and A2 = {3, 6, 9, 12}.

Differences out of A2:
3− 0 = 3, 3− 1 = 2, 3− 2 = 1,
6− 0 = 6, 6− 1 = 5, 6− 2 = 4,
9− 0 = 9, 9− 1 = 8, 9− 2 = 7,
12− 0 = 12, 12− 1 = 11, 12− 2 = 10; i.e. N2(δ) = 1 for all δ.

Differences out of A1 are negatives of these: N1(δ) = 1 for all δ.
For each non-zero δ∈G , adversary’s success probability is

1

2

(
N1(δ)

|A1|
+

N2(δ)

|A2|

)
=

1

2

(
1

3
+

1

4

)
=

1

2

7

12
=

7

24
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Difference sets

Difference sets have been much-studied by mathematicians.

Definition

A difference set in a group G is a set D ⊆ G such that, when we
take all pairwise internal differences between the elements of D,
every non-identity group element occurs a fixed number λ of times.

Example: {1, 2, 4} is a difference set in Z7 with λ = 1 - each
non-zero element of Z7 occurs once as a difference.
To see this: 4− 1 = 3, 4− 2 = 2, 2− 1 = 1, 2− 4 = −2 =
5, 1− 2 = −1 = 6, 1− 4 = −3 = 4.
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RWEDFs from difference sets

Theorem

Let G be a group of order n, and let A = {A1,A2} partition G .
Then A is an RWEDF ⇔ A1 and A2 are difference sets.

Example: Let G = Z7.
Let A1 = {1, 2, 4} and A2 = {0, 3, 5, 6}.
Then {A1,A2} is a (7, 2; 3, 4; 7

6)-RWEDF.
For any δ, adversary’s success probability is 7

12 .
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New families of RWEDFs

Observe that all the examples we have seen so far have 2 sets, i.e.
m = 2.
Q: Can we get examples with m > 2?

Also, notice that the constant ` in the definition is in Q but not
necessarily Z.
Q: Can we obtain new constructions for RWEDFs, which have
integer `?
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Some group theory

Definition

If a finite group G has subgroups S1, . . .Sm with the property that
S1 \ {0}, . . . ,Sm \ {0} partition G , then the collection of subgroups
is called a partition of G .

Groups which have a partition include:

elementary abelian p-groups of order ≥ p2, for p prime

Frobenius groups (eg dihedral group D2n with n odd)

groups of Hughes-Thompson type

groups isomorphic to PGL(2, ph) with p an odd prime
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New group theoretic construction

We can prove the following:

Theorem

Any partition of a finite group G forms an RWEDF with integer `.

Construction: take A1 = S1 \ {0}, . . . ,Am = Sm \ {0}.

Interestingly, this holds for any group, not just abelian; so we can
begin to study RWEDFs in non-abelian situations.

Although motivated by finding non-EDF RWEDFs, this also gives
previously-unknown constructions for new EDFs!
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RWEDF example

Example of group partition construction:

Let G = Z3 × Z3.

Let A1 = {(1, 1), (2, 2)}, A2 = {(0, 1), (0, 2)},
A3 = {(1, 2), (2, 1)} and A4 = {(1, 0), (2, 0)}.
Note these are subgroups with {(0, 0)} removed in each case.

For non-zero δ ∈ G , Ni (δ) = 2 for δ 6∈ Ai and Ni (δ) = 0 for
δ ∈ Ai (for each 1 ≤ i ≤ 4).

A forms a (9, 4; 2, 2, 2, 2; 3)-RWEDF (indeed, this is an EDF).

We can explore different choices of groups to fine-tune success
probability.
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Open questions

There are many avenues to explore further in this area.

New constructions for RWEDFs which are not EDFs

Partitioned external difference families - intermediate case

Fine-tune our constructions to yield smallest possible success
probabilities.
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Some key messages before thinking about a PhD

Enjoying Maths and being qualified to do a PhD is enough!

Maths can be a great part of your life but need not be your
whole life.

Don’t compare yourself to fellow students who may project an
image of greater knowledge/certainty..

PhDs give the opportunity to both research and teach, and
subsequent academic jobs also involve both research and
teaching.
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Choosing a PhD

Your supervisor and your working relationship with them is
crucial.

Make sure your supervisor will have time for you and that you
feel comfortable with them.

Make sure you are happy with the location and that it works
with the non-work parts of your life.

Choosing an area of maths that suits you is important, but
there will be some flexibility to move sideways later.
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During your PhD

Try to develop the ability to speak out/ask when something
isn’t clear to you.

Many people around you are bluffing and also don’t know.

Be aware: there is a culture of brevity in maths papers/talks
which can make straightforward things unclear by removing
intermediate steps.

There is a culture of removing the process from proof
write-ups - don’t compare your process with other people’s
final product.

Remember that you know more about what you are working
on than anyone else.
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General observations

There are many different ways of being a mathematician - find
the maths/life balance which works for you.

Everyone benefits when universities contain practising
mathematicians with different approaches and styles.

Don’t let yourself be intimidated.

Be flexible and remember there are many different possible
routes.

Sophie Huczynska University of St Andrews Combinatorics in Information Security PiWORKS talk


