Untangling the mysteries of our Sun: Exploring the role of braided magnetic fields in coronal heating

Antonia Wilmot-Smith University of St Andrews

PiWORKS Seminar, 25 April 2023

Dynamic Corona

Video: https://sdo.gsfc.nasa.gov/assets/img/ultra_hd/0171304Whip_best.mp4

Photospheric Motions

Movie: <u>https://commons.wikimedia.org/wiki/File:Granulation_Quiet_Sun_SST_25May2017.webm</u> Credit: Swedish Solar Telescope

Image: TRACE satellite

Image: TRACE satellite

Image: NASA, Hi-C

MHD modelling

Ohm's law: $\mathbf{j} = \sigma (\mathbf{E} + \mathbf{v} \times \mathbf{B})$

+ Energy equation + Ideal gas law

Suggested resource: An introduction to Magnetohydrodynamics, P.A. Davidson, CUP 2001.

Induction Equation

• Use Ohm's law, Ampère's law and Faraday's law to eliminate **E** (the electric field), take $\eta = 1/(\mu\sigma)$ as a constant, use vector identities and the solenoidal constraint to get

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \, \nabla^2 \mathbf{B}$$

- In MHD v (the velocity) and B (the magnetic field) are the primary variables
- The induction equation is an advection-diffusion equation for **B** (the magnetic field).

Suggested resource: Magnetohydrodynamics of the Sun, E. R. Priest, CUP (2014)

Ideal evolution & Frozen-In Flux

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$

<u>Alfvén's theorem</u> (Hannes Alfvén, 1943):

In a perfectly conducting fluid, magnetic field lines move with the fluid: the field lines are 'frozen' into the plasma.

- Motion along magnetic field lines doesn't change their topology
- Motions transverse to the magnetic field lines carry the magnetic field lines with them

Suggested resource: Magnetohydrodynamics of the Sun, E. R. Priest, CUP (2014)

Force-Free Fields

$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \mathbf{j} \times \mathbf{B} + \rho \, \mathbf{g}$$

Force-Free Fields

 $(\nabla \times \mathbf{B}) \times \mathbf{B} = \mathbf{0}$

- In cases where $\mathbf{B} \neq \mathbf{0}$ in the domain this is equivalent to $\nabla \times \mathbf{B}(x) = \alpha(x)\mathbf{B}(x)$ (*Beltrami fields* of fluid dynamics)
- Since $\nabla \cdot \mathbf{B} = 0$ we also have $(\mathbf{B} \cdot \nabla) \alpha = 0$ i.e. α is constant along magnetic field lines
- Case of α = constant in the domain is known as a *linear force-free field*

Suggested resource: Solar force-free magnetic fields, Wiegelmann & Samurai, LRSP 18 1 (2021)

Physical scenario

 $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$

Magnetic field in the loop evolves ideally (frozen-in flux)

 $(\nabla \times \mathbf{B}) \times \mathbf{B} = \mathbf{0}$

Magnetic field relaxes to a force-free equilibrium

The Parker Problem

Parker, E.N. (1994) *Spontaneous current sheets in magnetic fields: with applications to stellar X-rays* International Series in Astronomy and Astrophysics, vol 2. Oxford University Press, Oxford

The Parker Problem

Given an arbitrary flow on the boundary of the domain, can the magnetic field relax to a smooth force-free equilibrium or do tangential discontinuities develop in the magnetic field?

Suggested resource: *The Parker problem: existence of smooth force-free fields and coronal heating,* Pontin & Hornig, Living Reviews in Solar Physics **17** 5 (2020)

Current sheets and magnetic reconnection

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

• Diffusion important in current sheets & leads to changes in connectivity of the magnetic field, releasing magnetic energy

Suggested resource: *Magnetic Reconnection: MHD theory and modelling,* Pontin & Priest Living Reviews in Solar Physics **19** 1 (2022)

- Start with an analytical magnetic field configuration based on pigtail braid
- Use a numerical code to relax the magnetic field towards a force-free state

- Start with an analytical magnetic field configuration based on pigtail braid
- Use a numerical code to relax the magnetic field towards a force-free state
- Smooth variation of current in the ideal evolution
- BUT small scales develop in integrated quantities

J_z, z=0

- Start with an analytical magnetic field configuration based on pigtail braid
- Use a numerical code to relax the magnetic field towards a force-free state
- Smooth variation of current in the ideal evolution
- BUT small scales develop in integrated quantities

- Start with an analytical magnetic
 field configuration based on
 pigtail braid
 - Use a numerical code to relax the magnetic field towards a force-free state

N

J_z, z=0

-15 -20

 $\int j_{\parallel} \mathrm{d}l$ lower boundary

0.59

0.57

Why small scales?

- Magnetic braids equivalent to stirring
- Compare with stirring protocols
- and taffy pulling!

Boyland, Aref & Stremler, J. Fluid Mech., 403 277 (2000)

Why small scales?

- Magnetic braids equivalent to stirring
- Compare with stirring protocols
- and taffy pulling!

(a)

(b)

(e)

5

Boyland, Aref & Stremler, J. Fluid Mech., 403 277 (2000)

TOPOLOGICAL OPTIMIZATION OF ROD-STIRRING DEVICES

Fig. 1.2 (a) A taffy-pulling device. (b) Snapshots over a full period of operation, with taffy.

MD Finn & JL Thiffeault, Topological Optimisation of Rod-Stirring Devices, SIAM Review, 53 4 (2011)

Non-ideal evolution

Non-ideal evolution

Jz, central plane

Resistive relaxation: end state

- Magnetic field "unbraids", releasing energy
- Less energy release than would have been expected in standard theory
- Development of mathematical constraints on energy release