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My journey to where | am now...

2006—-2012: St Margaret’s High School

> Favourite subject was maths—thought this meant
| should study accountancy at university;

> Encouraged by teacher to study maths instead.

2012-2016: UG at University of Strathclyde
> Favourite classes were applied analysis and
mathematical biology;

> Worked as UG Teaching Assistant during third
and fourth years;

> Enjoyed final year research project—encouraged
me to do PhD.



My journey to where | am now...

2016-2019: PhD at University of Strathclyde

> Coagulation-fragmentation equations:
describes systems of particles that can merge
together and break apart;

> Applications in blood clotting, animal groupings,
powder production industry;

> | concentrated more on “pure”, theoretical side;

> Spent time as teaching assistant for mathbio
classes at Strathclyde and at AIMS in South
Africa;

> Loved PhD but was motivated to move into
more applied biological field...



My journey to where | am now...

2019-2023: Cross-Disciplinary Post-Doctoral Fellowship (XDF) at
University of Edinburgh

Aim of 4-year programme:
bring together researchers from different
sciences to tackle biomedical problems;

Month 1-2: explore the field of biomedicine J

I

Year 1: Undertake rotation project while getting
to grips with (and exploring) the field J

1

Years 2—4: Main 3-year project )




My journey to where | am now...

Current: Chancellor’s Fellow at University of Strathclyde

> Studying DNA systems using mathematical modelling and analysis of
experimental data;

> In particular: how/why do particular changes in DNA occur in disease?

> Time split between research and teaching (more research-focussed to
start with);

> Continuing to lecture mathematical biology course at AIMS in South
Africa.



Now onto some research...



DNA is found in every cell in your body and contains your
genetic information

> DNA is made up of basic structural units called nucleotides;

> Four types of nucleotide bases in DNA: adenine (A), thymine (T),
cytosine (C) and guanine (G);

> A DNA molecule is made up of two “complementary strands” that are
linked by weak chemical bonds between A and T nucleotides and
between C and G nucleotides.
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DNA methylation is an epigenetic mark that is primarily
found at CpG sites
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Double-stranded CpG dyad is always in one of three possible states.
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Megabase-scale loss of DNA methylation in cancer has
been observed since 1983
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> Methylation loss is widely observed in different tumour types.
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> Large regions affected by methylation loss are referred to as partially
methylated domains (PMDs).



Our recent findings: PMDs are associated with disordered,
heterogeneous methylation patterns

-, bioRyiv

THE PREPRINT SERVER FOR BIOLOGY

bioRxiv posts many COVID19-related papers. A reminder: they have not been formally peer-reviewed and
should not guide health-related behavior or be reported in the press as conclusive

New Results A Follow this preprint

Genome-wide single-molecule analysis of long-read DNA methylation reveals
heterogeneous patterns at heterochromatin

Lyndsay Kerr, ©© Ramon Grima Duncan Sproul
doi: https://doi.org/10.1101/2022.11.15.516549

Can mathematical models help us to understand how these regions
lose methylation and form disordered methylation patterns?



Studies indicate that CpG sites collaborate with each other
in the genome (likely via enzyme recruitment)
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System of reactions has previously been proposed to
describe methylation processes (Haerter et. al. 2014)

u: unmethylated; h: hemimethylated; m: methylated
. Ky ke ks ka
Non-collaborative: u — h; h—= m; m — h; h — u;
Collaborative : u—|—hk—5> h+ h; u+mk—6> h+ m;
h+h57+m+h; h+m‘k8+m+m;

m+hﬁ>h+h; m+uﬂ>h—+—u;

h+hHy yyp h+u X2 4.

Assumption: collaboration can only occur between neighbouring CpGs
= nearest-neighbour collaborative system

How can varying the reaction rates cause methylation to be lost?



Weakening the collaborativity between CpGs leads to
of DNA methylation

high collaborativity = low collaborativity

™ Unmethylated
m Hemimethylated

Increasing time "J:,‘_? u Methyiated

.

Result from simulations:

> decreasing collaborativity leads to highly methylated regions losing
methylation and “disordered” methylation patterns forming;

loss

> other causes of methylation loss lead to “ordered” unmethylated patterns.

Hypothesis: Could collaborativity strength be lower in PMDs?



Hypothesis: collaborativity strength is lower in PMDs
compared to non-PMDs

Why could hypothesis make sense?

CpGs are generally further apart from each other in PMDs compared to
non-PMDs;

Strategy to investigate

Infer which collaborativity rates are likely to have produced the patterns in
PMDs and in non-PMDs:

> Predict properties of methylation patterns resulting from different sets
of reaction rates.

> Check which predictions are “most similar” to observed data—i.e.
which rates are likely to have produced observed data?



How can we
obtain predictions
for different
reaction rates?



How can we obtain predictions to compare to real data?

> We could use stochastic simulations of nearest-neighbour
collaborative system...



How can we obtain predictions to compare to real data?

> We could use stochastic simulations of nearest-neighbour
collaborative system...

but these are very computationally expensive.



How can we obtain predictions to compare to real data?

> We could use stochastic simulations of nearest-neighbour
collaborative system...

but these are very computationally expensive.

> Better to use mathematical equations describing the
nearest-neighbour collaborative system...



How can we obtain predictions to compare to real data?

> We could use stochastic simulations of nearest-neighbour
collaborative system...

but these are very computationally expensive.

> Better to use mathematical equations describing the
nearest-neighbour collaborative system...

but these are infeasible to construct for large systems of CpG sites.



Can we approximate the nearest-neighbour collaborative system using a
model that can be described by equations?



Is collaborativity strength lower in PMDs compared to
non-PMDs?

Aim:

Find a model that can be written in terms of mathematics and provides a
good approximation to the nearest-neighbour collaborative system...

Step 1: Find this approximation by comparing predictions from models to
data simulated using nearest-neighbour collaborative system.

Step 2: Compare predictions obtained from this approximate model to
observed data and infer reaction rates.

Interested in examining the system in steady state.



We’re Going on a Model Hunt
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Can nearest-neighbour
collaborativity in large systems be
approximated by considering small

systems?’



Two-site model

There are six possible states for each pair of sites:

(O unmethylated; @ hemimethylated; @ methylated

¢ 97 99 99 99 09

dP,
T — kyPhm — 2k3Pmm + kg Phm:
dt
dP,
d:u = =2k Puu + kaPyp + k12Pyp
dPpp
o k1Pun — 2koPpp + k3Ppm — 2kaPpp + ks Pup — 2k7Ppp + ko Pam — 2k11Ppp
dP,
o = ~HaPum + k2Pup — ksPum + KaPhm = K6 Pum = KioPum
dPpm

Pl kiPum + 2kaPppy — ko Ppm + 2k3Pmm — k3Ppm — kaPhm + k6 Pum + 2k7 Phyy — kg Phm — koPhm

Pun =1 — Pmm — Puu — Ppp — Pum — Ppp-



Two-site model

There are six possible states for each pair of sites:

(O unmethylated; @ hemimethylated; @ methylated

°? 97 99 99 99 99

> Can write down equations describing nearest-neighbour collaboration
for this small system.

> Statistics obtained from two-site model are poor predictions of statistics
associated with large systems.

> Three-site model does not provide much of an improvement.



Perhaps we should instead try a
model describing an infinite number
of CpG sites...



Mean field (MF) model

O unmethylated; . hemimethylated; . methylated;

The change in state of a CpG depends on the mean of its local environment.



Can write down Chemical Master Equation describing the
probability that a site is in each state

dP,
p = —a3Pu + a4Ph
dP
Tth =a (1 - P, - Ph) — aoPy + a3P, — a4 Py,

Pm=1—P,— P,

“Effective” reaction rates a;, i € {1,2,3,4} account for changes in state
that occur due to

> non-collaborative reactions;

> collaborative reactions (determined by the mean state of the system
rather than nearest-neighbour interactions).



MF model improves upon two-site model but decreases in

accuracy as collaborativity strength increases

x: collaborativity strength; y: methylation strength
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solid line: MF model; data points/error bars: simulations.
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What will happen if we combine the
two-site model with the MF model?



Distinct pairs MF model

O unmethylated; . hemimethylated; ‘ methylated;

IRIEAIEAL

Split genome into distinct pairs: each CpG belongs to only one pair.

CpGs within a pair can interact and other interactions are approximated by
considering the probability that two paired states are adjacent.



Distinct pairs MF model is a slight improvement of original
MF model but still struggles for large x

x: collaborativity strength; y: methylation strength
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solid line: distinct pairs MF model; data points/error bars: simulations.



Overlapping pairs MF model

Q unmethylated; . hemimethylated,; . methylated;

9 O 6500 oo

Split genome into overlapping pairs of CpGs: each CpG is in two paits.

CpGs within a pair can interact and other interactions are approximated by
considering the probabilities that certain states “overlap”.



Overlapping pairs MF model does very well at
approximating nearest-neighbour collaborative system

x: collaborativity strength; y: methylation strength

B =5

solid line: overlapping pairs MF model; data points/error bars: simulations.



x: collaborativity strength;

variance
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Overlapping pairs MF model does very well at
approximating nearest-neighbour collaborative system

y: methylation strength
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solid line: overlapping pairs MF model; data points/error bars: simulations.



Overlapping pairs MF model can be used to infer
parameters for nearest-neighbour collaborative system

(a) (b)
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Future work: combine the data analysis and modelling

> High heterogeneity of patterns observed within PMDs supports
hypothesis that methylation loss arises due to collaborativity breakdown;

> Investigate further by inferring collaborativity strength in different
genomic regions;

> Is collaborativity lower in PMDs compared to non-PMDs?
> Infer parameters from different types of experimental dataset to identify
possible mechanisms behind collaborativity;

> Examine DNA methylation using different types of mathematical
models.
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Chemical Master Equation for the Distinct/Overlapping
Pairs MF Model

dP,

T = — a1 Poum + 38Ppm,

dt
dP,

d:u —*32Puu+511(17Pmm*Puu*Phh*Pum*th):
dPpp
e G a4)Pppy + a9Ppm + a10 (1 — Pmm — Puu — Phhy — Pum — Phm),
dP,

= (a5 + 36)Pum + a7Phm + 312(1 = P — Pus = Py = Pum — P
dPpm

v a1 Pmm + a4 Ppp + a5 Pum — (a7 + ag + a9) Phm,

Puh =1 = Pmm — Puu — Php — Pum — Ppm-

“Effective” reaction rates a;, i € {1,2,...,12} account for changes in state that
occur due to

> non-collaborative reactions;
> collaborative reactions (between the two CpGs in the same pair);

> collaborative reactions (due to interaction between adjacent pairs in distinct
pairs model or due to interaction between overlapping pairs in overlapping
model).



