

LIANA HEUBERGER

research associate in algebraic geometry

WORKING WITH ALASTAIR CRAW

LOVES: yoga, hiking, poster making, the feeling of having a new article on the arXiv feed

HATES: stereotypes about pure maths, queueing at the 4W cafe, having fussed over this font for 40 minutes

Liana Heuberger University of Bath

PiWORKS Seminar 2024

GRAPHS

G = (nom-onruted) graph w/ no loops or multi edges
\n
$$
4
$$

\n6
\n 4
\n6
\n 4
\n 5
\n 7
\n 4
\n 4
\n 6
\n 4
\n 6
\n 4
\n 6
\n 1
\n 0
\n 1
\n 0
\n 0 <

(Recall ct is an injurialise of AG if A_G r = x r for some vector v.
Such a v is an eigenvector of AG.)

ANSWER: For
$$
\alpha = 2
$$
, these are the ADE diagrams. Indeed:

\n

PROPOSITION:	Let G be a connected graph. THE:
(i) The largest eigenvalue of A_G is <2 .	
(2) G is θ type ADE.	
Ans is called the spectral radius of G , $\rho(G)$	
(2) = 0 (1) can compute that $\rho(ADE) < 2$.	
(1) = 0 (2) we use the following	
Fact: If G' is a connected subgraph of G , then $\rho(G) \leq \rho(G)$.	

 $\begin{pmatrix} 1 \\ 4 \\ 1 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 4 \\ 1 \\ 1 \end{pmatrix}$ $\begin{array}{cccc} 0 & 1 & 0 & \dots & 0 & 1 \\ 1 & 0 & 1 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & \dots & 0 \end{array}$ $\frac{1}{4}$ $\begin{array}{c} 0 & 1 \\ 4 & 0 \end{array}$ $\overline{\mathbf{1}}$ $\begin{smallmatrix} 0 & 0 \\ 1 & 0 \end{smallmatrix}$

Claim Fact

Any G with $p(G)$ < 2 can 't contain ADE.

Who is $G⁷$

- \circ $\widetilde{A}_m \neq G$ = \circ G is a tree.
- \cdot $\widetilde{D_4}$ \neq G \rightarrow G has at most trivalent vertices
- \circ \widetilde{D}_{α} \notin G \rightarrow G has at most ONE trivalent vertex
- \circ $\widetilde{\epsilon}_{k}$ \neq G \rightarrow restrictions on lengths of arms

ONLY An Dn E678 survive.

$$
\begin{array}{ccc}\n\text{Second} \\
\text{incanonical:} \\
\left.\begin{array}{c}\n\text{FwITE SUBGRULPS OF SL}(2, \mathcal{L}) \\
\text{all} \\
\left(\begin{array}{c} a & b \\ c & d \end{array}\right) & \begin{array}{c} a, b, c, d \in \mathcal{L} \\
\text{and} -b c = 1\n\end{array}\right\}\n\end{array}
$$

Recall a GROUP Mis a set with an operation "." such that 0. $\#$ A₁B $\in \bigcap$, $A \cdot B \in \bigcap$ 1. $\forall A, B, C \in \bigcap \{A \cdot B\} \cdot C = A \cdot (B \cdot C)$ ASSOCIATIVITY 2. $\partial E \in \bigcap_{S^+} \mathcal{F} A \in \bigcap_{S^+} A \cdot \mathcal{F} = \bigoplus_{S^+} A = A$ IDENTITY ELEMENT 3. $\forall A \in \bigcap \exists B \in \bigcap s$ $A \cdot B = B \cdot A = E$ INVERSE ELEMENT.

PROPOSITION: If to conjunction, a finite subgroup of
$$
SL(2,\mathbb{C})
$$
 is one of:
\n(A_n) A cycle group of order $n+1$ generated by $\langle \begin{pmatrix} \Sigma_{n+1} & 0 \\ 0 & \Sigma_{n+1} \end{pmatrix} \rangle$
\n(D_n) A binary differential group
\n ϕ order $4(n+2)$
\n (E_6) The binary differential
\n \int group
\n \int $\begin{pmatrix} \Sigma_4 & 0 \\ 0 & \Sigma_4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_8^2 & \Sigma_8^7 \\ \Sigma_8^5 & \Sigma_8 \end{pmatrix}$
\n(E₃) The binary coshedral group:
\n $\begin{pmatrix} \Sigma_8 & 0 \\ 0 & \Sigma_8^7 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_8^7 & \Sigma_8^7 \\ \Sigma_8^8 & \Sigma_8 \end{pmatrix}$
\n(E₈) The binary coshedral group:
\n $\begin{pmatrix} \Sigma_8 & 0 \\ 0 & \Sigma_8^7 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_8^7 & \Sigma_8^7 \\ \Sigma_8^8 & \Sigma_8 \end{pmatrix}$
\nwhere $\Sigma_k = e^{2\pi i / k}$, m other words $(\Sigma_k)^k - 1$.

 $SU(2) \leq SU(2,0)$ maximual compact subgroup.
 $\{AA^* = I_2\}$ sdet $A = 1$ 3 = S any finite sor of $SU(2,0)$
 $\{det A = 1\}$ can be conjugated into $SU(2)$.
 $\begin{bmatrix} H S & SU(2,0) \end{bmatrix}$ $A S A^{\dagger} \in SU(2)$ Idea : $\sqrt{\frac{366.5u}{s}}$ su

An : Cone over a regular (n+1)-gon

PROPOSITION: If to conjunction, a finite subgroup of
$$
SL(2,\mathbb{C})
$$
 is one of:
\n(A_n) A cycle group of order $n+1$ generated by $\langle \begin{pmatrix} \Sigma_{n+1} & 0 \\ 0 & \Sigma_{n+1} \end{pmatrix} \rangle$
\n(D_n) A binary differential group
\n ϕ order $4(n+2)$
\n (E_6) The binary differential
\n \int group
\n \int $\begin{pmatrix} \Sigma_4 & 0 \\ 0 & \Sigma_4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_8^2 & \Sigma_8^7 \\ \Sigma_8^5 & \Sigma_8 \end{pmatrix}$
\n(E₃) The binary coshedral group:
\n $\langle \begin{pmatrix} \Sigma_8 & 0 \\ 0 & \Sigma_8^7 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_8^7 & \Sigma_8^7 \\ \Sigma_8^8 & \Sigma_8 \end{pmatrix} \rangle$
\n(E₈) The binary coshedral group:
\n $\langle \begin{pmatrix} \Sigma_8 & 0 \\ 0 & \Sigma_8^7 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_8^7 & \Sigma_8^7 \\ \Sigma_8^8 & \Sigma_8 \end{pmatrix} \rangle$
\nwhere $\Sigma_k = e^{2\pi i/2}$, m other words $(\Sigma_k)^2 - 1$.

Why are we absolutely these subgroups w/ A, D & E ?
\nEach group has a finite number of irreducible representations
\n
$$
\frac{O}{\sqrt{2}} \quad \frac{1}{\sqrt{2}} \quad \
$$

Running example:
$$
D_5 = \left\{ \begin{pmatrix} \Sigma & 0 \\ 0 & \Sigma^{-1} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mid \begin{pmatrix} \Sigma^6 & 1 \\ \Sigma^6 & \Sigma^7 \end{pmatrix}, \begin{pmatrix} \overline{T^{415}} & \overline{15} & \overline{18} & \overline{18
$$

VERTICES:
$$
p_{0} - p_{5}
$$

 $p_{i} \rightarrow p_{j}$
 $y_{\otimes p_{i}} = \bigoplus_{j} a_{ij} p_{j}$

Running example:
$$
D_5 = \left\{ \begin{pmatrix} \frac{2}{5} & 0 \\ 0 & \frac{2}{5} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Big| \begin{pmatrix} \frac{6}{5} & \frac{1}{5} \\ \frac{6}{5} & \frac{1}{5} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{1115} & \frac
$$

Ranning example:
$$
D_5 = \left\{ \begin{pmatrix} \frac{2}{5} & 0 \\ 0 & \frac{2}{5} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Big| \begin{pmatrix} \frac{6}{5} & 1 \\ \frac{6}{5} & \frac{1}{5} \end{pmatrix} \begin{pmatrix} \frac{4}{5} & \frac{1}{100} & \frac{1}{100}
$$

When we ignore the trivial representation, we obtain Remark:

The same is true for the rest of the As, Ds & Es.

Geometric Pov: Each subgroup of SL
$$
(2, \mathbb{C})
$$
 acts on \mathbb{C}^2 by multiplication.
We form the quotient \mathbb{C}^2/π , which is an affine algebraic surface.

C

Geometric
$$
Por
$$
:
Let form the quotient C_{Π}^2 , which is an affine algebraic surface.
Let form the quotient C_{Π}^2 , which is an affine algebraic surface.

$$
Ex: D_5 \text{ leads to the hypersurface singularity given by}
$$
\n
$$
(x^2 + y^2 z + z^4 = 0) \subset C^3
$$
\n
$$
(x^3 + z^4 z^4 = 0) \subset C^3
$$
\n
$$
(x^2 + 0) \subset C^3
$$

Geometric
$$
PoV
$$
 = Each subgroup of SL $(2, C)$ acts on C^2 by multiplication.
\nWe form the quotient $C^2/1$, which is an affine algebraic surface.
\n QD We can write down its equation!
\n $Ex: D_5$ leads to the hypersurface singularity given log
\n $(x^2 + y^2z + z^4 = 0) \subset C^3$
\n $(x^2 + y^2z + z^4 = 0) \subset C^3$
\n 1 had no ways to get rid of such points in geometry:
\n 1 Hence are about the points in geometry:
\n 1 and 1 are true itself.
\n 1 becomes much
\n 1 because 1 is
\n 1 and 1 are true, and 1 are

In the case of D5:

Its numinual resolution Y looks like:

In the case of D5:

Its numinial resolution Y looks like:

We call e_i EXCEPTIONAL.

In the case of D5:

Its numinial resolution Y looks like:

PunCHLINE:	This bijection is called the Tkay correspondence				
and if holds for all Γ c SL(2, C) find:					
of Γ	$\frac{1:1}{2}$	$\frac{1:2}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
AlGEBRA	GEORA	GEOMETRY			

Beyond SL (2, C)?

Hint:
$$
\vec{C} = \sum_{i=1}^{n} (3, \vec{C})
$$
 be finite.

\nExample: $\vec{C} = \frac{1}{6}(123) = \sqrt{\left(\begin{array}{cc} \sum_{i=1}^{n} 0 & 0 \\ 0 & \sum_{i=1}^{n} 0 \end{array}\right)} \begin{array}{ccc} \sum_{i=1}^{n} 0 & 0 \\ \sum_{i=1}^{n} 0 & \sum_{i=1}^{n} 0 \end{array}$

Beyond SL (2, C)?

Dimension 3: Let
$$
\Gamma \subset SL(3, \mathbb{C})
$$
 be finite.

\n**Example:** $\Gamma = \frac{1}{6}(123) = \left\{ \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^3 \end{pmatrix} \middle| \varepsilon^6 = 1 \right\}$

\n**EXAMPLE:** $\Gamma = \frac{1}{6}(123) = \left\{ \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^3 \end{pmatrix} \middle| \varepsilon^6 = 1 \right\}$

On the algebraic side: I has 6 irreps po ... p5, all of dinn 1.

$$
\begin{array}{ccc}\n\beta i & \Gamma & \longrightarrow & \mathbb{C} \\
\left(\begin{array}{ccc}\n\mathcal{E} & 0 & 0 \\
0 & \mathcal{E}^2 & 0 \\
0 & 0 & \mathcal{E}^3\n\end{array}\right) & \longrightarrow & \mathcal{E}^i, \quad i = 0.5.\n\end{array}
$$

Beyond SL (2, C)?

Dimension 3: Let
$$
\Gamma \subset SL(3, \mathbb{C})
$$
 be finite.

\n**Example:** $\Pi = \frac{1}{6}(123) = \left\{ \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^3 \end{pmatrix} \middle| \varepsilon^6 = 1 \right\}$

\n**EXAMPLE:** $\Pi = \frac{1}{6}(123) = \left\{ \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^3 \end{pmatrix} \middle| \varepsilon^6 = 1 \right\}$

On the algebraic side: I has 6 irreps po ... p5, all of dinne 1. $pi: \Gamma \longrightarrow \mathbb{C}$

$$
\begin{pmatrix} \mathcal{E} & 0 & 0 \\ 0 & \mathcal{E}^2 & 0 \\ 0 & 0 & \mathcal{E}^3 \end{pmatrix} \longrightarrow \quad \mathcal{E}^i \quad , \quad i = 0.5.
$$

Im particular,
$$
V = \rho_1 \oplus \rho_2 \oplus \rho_3
$$

 $\int i \otimes \rho_1 = \varepsilon^{i+j} = \int i+j \pmod{6}$

What about the geometry side? Want to study the variety. $X = \mathbb{C}^3/\sqrt{1 - \left(\int_0^{\infty} \int_0^{\infty} \sin x \, dx\right)^2}$

Again, you can write its equations and study the singularities:

What about the geometry side? Want to study the variety. $X = \mathbb{C}^{5}/\sqrt{2}$ (for Γ in the ex)

Again, you can write its equations and study the singularities:

What's new to this case!

- 1. Interior lattice points can be marked m/ the same irrep (eg2)
- 2. Interior livre seguents can le martied W/ more than one irrep (eg 3 2 9)
- 3. The marking of an interior line Segment is not deternined by the
- 4. The meanting of an interior lattice
point is not determined by the geometry
of the surface. (eg 2 & 5)
- 5. The Eulernumber of an irreducible component of the exceptional divisor is not bounded by 6 from above.

Thank you for your