

LIANA HEUBERGER

research associate in algebraic geometry

WORKING WITH ALASTAIR CRAW

LOVES: yoga, hiking, poster making, the feeling of having a new article on the arXiv feed

HATES: stereotypes about pure maths, queueing at the 4W cafe, having fussed over this font for 40 minutes

Liana Heuberger University of Bath

PiWORKS Seminar 2024

GRAPHS

(Recall d is on igenvalue of AG if $A_G \cdot v = \alpha \cdot v$ for some vector v. Such a v is an eigenvector of A_G .)

ANSWER: For
$$\alpha = 2$$
, these are the ADE diagrams. Indeed:

$$\frac{PROPOSiTION:}{PROPOSiTION:} Let G be a connected graph. TFAE:
(1) The largest eigenvalue of AG is < 2.
(2) G is of type ADE.
(2) G is of type ADE.
(3) this is called the greatral radius of G, $p(G)$
(2) =0 (1) can compute that $p(ADE) < 2$.
(1) = $p(2)$ we use the following
Fact: If G' is a connected subgraph of G, then
 $p(G) = p(G)$.$$

 $\begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix} = \mathcal{Z} \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix}$ 0 1 0 - _ 0 1 1 0 1 - _ 0 0 0 1 0 . . . 01 1 0010

Claim Fact

Amy G with p(G) < 2 can 't Contain ADE.

Who is G?

- An & G => G is a tree.
- D₄ & G o G has at most trivalent vertices
- Dn & G o G has at most ONE trivalent vertex
- $\widetilde{E}_k \notin G$ restrictions on lengths of arms

ONLY An Dn EG78 SURVIVE.

Second
 FINITE SUBGROUPS OF SL
$$(2, \mathbb{C})$$
.

 incannation:
 $\|$
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{C} \\ ad - bc = 1 \end{pmatrix}$

Recall a GROUP Γ is a set with an operation "." such that 0. $\# A_1 B \in \Gamma$: $A \cdot B \in \Gamma$ 1. $\# A_1 B_1 C \in \Gamma$: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ Associativity 2. $\Im E \in \Gamma$ st $\# A \in \Gamma$: $A \cdot E = E \cdot A = A$ IDENTITY ELEMENT 3. $\# A \in \Gamma$ $\Im B \in \Gamma$ st $A \cdot B = B \cdot A = E$ INVERSE ELEMENT.

PROPOSITION: It to conjugation, a finite subgroup of
$$SL(2, \mathbb{C})$$
 is one of:
(An) A cyclic group of order $n+1$ generated by $\left\langle \begin{pmatrix} \Sigma_{n+1}, 0 \\ 0 & \Sigma_{n+1} \end{pmatrix} \right\rangle$
(Dn) A binary dihedral group $\left\langle \begin{pmatrix} \Sigma_{2(n-2)}, 0 \\ 0 & \Sigma_{2(n-2)} \end{pmatrix} \right| \begin{pmatrix} 0, 1 \\ -1, 0 \end{pmatrix} \right\rangle$
(E_e) The binary detrahedral group : $\left\langle \begin{pmatrix} \Sigma_{4}, 0 \\ 0 & \Sigma_{4}^{-1} \end{pmatrix} \right| \begin{pmatrix} 0, 1 \\ -1, 0 \end{pmatrix} \right\rangle \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_{8}^{2} & \Sigma_{8}^{2} \\ \Sigma_{8}^{2} & \Sigma_{8} \end{pmatrix} \right\rangle$
(E₇) The binary octahedral group : $\left\langle \begin{pmatrix} \Sigma_{8}, 0 \\ 0 & \Sigma_{8}^{-1} \end{pmatrix} \right| \begin{pmatrix} 0, 1 \\ -1, 0 \end{pmatrix} \right| \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_{8}^{2} & \Sigma_{8}^{2} \\ \Sigma_{8}^{2} & \Sigma_{8} \end{pmatrix} \right\rangle$
(E₈) The binary icosahedral group: $\left\langle \begin{pmatrix} \Sigma_{8}, 0 \\ 0 & \Sigma_{8}^{-1} \end{pmatrix} \right| \begin{pmatrix} 0, 1 \\ -1, 0 \end{pmatrix} \left| \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_{8}^{2} & \Sigma_{8}^{2} \\ \Sigma_{8}^{2} & \Sigma_{8} \end{pmatrix} \right\rangle$
(E₈) The binary icosahedral group: $\left\langle \begin{pmatrix} \Sigma_{8}^{2}, 0 \\ 0 & \Sigma_{8}^{2} \end{pmatrix} \right\rangle \begin{pmatrix} 0, 1 \\ -1, 0 \end{pmatrix} \left| \frac{1}{\sqrt{5}} \begin{pmatrix} -\Sigma_{5} + \Sigma_{5}^{2} & \Sigma_{5}^{2} \\ \Sigma_{5}^{2} - \Sigma_{5}^{3} & \Sigma_{5}^{-} - \Sigma_{5}^{4} \end{pmatrix} \right\rangle$
where $\Sigma_{k} = e^{2\pi i L_{k}}$, in other words $(\Sigma_{k})^{k} \cdot 1$.

Idea : Su) SL

$$Idea : SU(2) \leq SL(2,C) \quad \text{maximual compact subgroup.} \\ \left\{\begin{array}{l} A \cdot A^* = I_2 \\ 0 \quad det A = 1\end{array}\right\} \quad \left\{\begin{array}{l} det A = 1 \end{array}\right\} = \operatorname{p} \text{ any finite sor of } SL(2,C) \\ \operatorname{can se conjugated into } SU(2). \\ \end{array}\right\} \\ \left\{\begin{array}{l} A \cdot A = I_3 \\ 0 \quad det A = 1\end{array}\right\} \quad \left[\begin{array}{l} H \quad S < SL(2,C) \\ finite \\ SU(2) \end{array}\right] \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ finite \\ St \quad A \quad SA^T \in SU(2). \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ finite \\ St \quad A \quad SA^T \in SU(2). \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ finite \\ St \quad A \quad SA^T \in SU(2). \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ finite \\ St \quad A \quad SA^T \in SU(2). \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ SU(2,C) \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ SU(2,C) \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ SU(2,C) \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ SU(2,C) \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S < SL(2,C) \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad S \\ SU(2) \\ \end{array}\right\} \\ \left\{\begin{array}{l} H \quad SU(2,C) \\ \end{array}$$

$$\begin{array}{rcl} \underline{Idea} &:& SU(2) \leq SL(2, \mathbb{C}) & maximual compact subgroup. \\ \left\{\begin{array}{l} A \cdot A^{*} = I_{2} \\ 0 & det A = 1 \end{array}\right\} & \left\{\begin{array}{l} det A = 1 \end{array}\right\} = p & any finite sgr of SL(2, \mathbb{C}) \\ can & e & conjugated indo SU(2). \end{array}\right\} \\ \left[\begin{array}{l} \exists a & 2 \cdot 1 & cover \\ \end{array}\right] & \left[\begin{array}{l} \forall S < SL(2, \mathbb{C}) \end{array}\right] \neq a \in SL(2, \mathbb{C}) \\ finite & st. & A \cdot A \cdot I \in SU(2) \end{array}\right] \\ \left[\begin{array}{l} \hline & \\ \end{array}\right] & \left[\begin{array}{l} \forall S < SL(2, \mathbb{C}) \end{array}\right] \neq a \in SL(2, \mathbb{C}) \\ finite & st. & A \cdot A \cdot I \in SU(2) \end{array}\right] \\ \left[\begin{array}{l} \hline & \\ \end{array}\right] & \left[\begin{array}{l} \forall S < SL(2, \mathbb{C}) \end{array}\right] \Rightarrow a & 2 \cdot 1 & cover \\ \left[\begin{array}{l} \forall S < SL(2, \mathbb{C}) \end{array}\right] \Rightarrow a & 2 \cdot 1 & cover \\ \left[\begin{array}{l} \forall S < SL(2, \mathbb{C}) \end{array}\right] & \left[\begin{array}{l} \forall S < SL(2, \mathbb{C}) \end{array}\right] \\ \left[\begin{array}{l} \hline & \\ \end{array}\right] & \left[\begin{array}{l} \forall S < SL(2, \mathbb{C}) \end{array}\right] \\ \left[\begin{array}{l} \forall S < SL(2, \mathbb{C}) \end{array}\right] & \left[\begin{array}{l} \forall S < SL(2, \mathbb{C}) \end{array}\right] \\ \left[\begin{array}{l} \forall S < SL(2, \mathbb{C}) \end{array}\right] \\ \left[\begin{array}{l} \hline & \\ \end{array}\right] & \left[\begin{array}{l} \forall SL(2, \mathbb{C}) \end{array}\right] \\ \left[\begin{array}{l} \forall SL($$

Am: Cone over a regular (M+1)-gon

PROPOSITION: It to conjugation, a finite subgroup of
$$SL(2, \mathbb{C})$$
 is one of:
(An) A cyclic group of order $n+1$ generated by $\left\langle \begin{pmatrix} \Sigma_{n+1}, 0 \\ 0 & \Sigma_{n+1} \end{pmatrix} \right\rangle$
(Dn) A binary dihedral group $\left\langle \begin{pmatrix} \Sigma_{2(n-2)}, 0 \\ 0 & \Sigma_{2(n-2)} \end{pmatrix} \right| \begin{pmatrix} 0, 1 \\ -1, 0 \end{pmatrix} \right\rangle$
(E_e) The binary detrahedral group : $\left\langle \begin{pmatrix} \Sigma_{4}, 0 \\ 0 & \Sigma_{4}^{-1} \end{pmatrix} \right| \begin{pmatrix} 0, 1 \\ -1, 0 \end{pmatrix} \right\rangle \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_{8}^{2} & \Sigma_{8}^{2} \\ \Sigma_{8}^{2} & \Sigma_{8} \end{pmatrix} \right\rangle$
(E₇) The binary octahedral group : $\left\langle \begin{pmatrix} \Sigma_{8}, 0 \\ 0 & \Sigma_{8}^{-1} \end{pmatrix} \right| \begin{pmatrix} 0, 1 \\ -1, 0 \end{pmatrix} \right| \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_{8}^{2} & \Sigma_{8}^{2} \\ \Sigma_{8}^{2} & \Sigma_{8} \end{pmatrix} \right\rangle$
(E₈) The binary icosahedral group: $\left\langle \begin{pmatrix} \Sigma_{8}, 0 \\ 0 & \Sigma_{8}^{-1} \end{pmatrix} \right| \begin{pmatrix} 0, 1 \\ -1, 0 \end{pmatrix} \left| \frac{1}{\sqrt{2}} \begin{pmatrix} \Sigma_{8}^{2} & \Sigma_{8}^{2} \\ \Sigma_{8}^{2} & \Sigma_{8} \end{pmatrix} \right\rangle$
(E₈) The binary icosahedral group: $\left\langle \begin{pmatrix} \Sigma_{8}^{2}, 0 \\ 0 & \Sigma_{8}^{2} \end{pmatrix} \right\rangle \begin{pmatrix} 0, 1 \\ -1, 0 \end{pmatrix} \left| \frac{1}{\sqrt{5}} \begin{pmatrix} -\Sigma_{5} + \Sigma_{5}^{2} & \Sigma_{5}^{2} \\ \Sigma_{5}^{2} - \Sigma_{5}^{3} & \Sigma_{5}^{-} - \Sigma_{5}^{4} \end{pmatrix} \right\rangle$
where $\Sigma_{k} = e^{2\pi i L_{k}}$, in other words $(\Sigma_{k})^{k} \cdot 1$.

Why are we labelling these subgroups
$$W/A, D \neq E$$
?
• Each group has a finite number of irreducible representations
• Each group has a finite number of irreducible representations
• a representation of a finite group Γ is a group
homomorphism $p: \Gamma \rightarrow GL(V)$ for some Vector space V .
• dimension /degree
• dime $(p) = 0$ line (V) dimension /degree
• an irreducible representation (or iRREP) is one that
admits no nen-trivial subrepresentations.
• operations: \oplus, \otimes .
• let $p_0 \dots p_m$ be the irreps of Γ .
any representation $V = \bigoplus_{i=0}^{\infty} p_i \otimes a_i = : \bigoplus_{i=0}^{n} a_i \cdot p_i$

Running example:
$$D_5 = \left(\begin{pmatrix} \mathcal{E} & 0 \\ 0 & \mathcal{E}^{-1} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \middle| \begin{array}{c} \mathcal{E}^6 = 1 \\ primi \\ \end{array} \right)$$

 $\left(\begin{array}{c} \mathsf{THis} \text{ is ALREADY} \\ A REPRESENTATION \\ \end{array} \right)$
 $\mathsf{DENOTE BY V}$.
 $\mathcal{O} \ \mathsf{G} \ \mathsf{irreps} \ \mathcal{P}_0 = \mathcal{P}_5$
 $\mathcal{O} \ \mathsf{Gut} \ \mathsf{form} \ \mathsf{its} \ \underline{\mathsf{McKay}} \ \mathsf{guiver} \ (\mathsf{on oniented graph})$

VERTICES:
$$f_{0} - f_{5}$$

 $f_{i} \rightarrow f_{j}$
 $V \otimes p_{i} = \bigoplus_{j}^{a_{ij}} p_{j}$

Running example:
$$D_{5} = \left(\begin{pmatrix} \mathcal{E} & 0 \\ 0 & \mathcal{E}^{-1} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \middle| \begin{array}{c} \mathcal{E}^{6} = 1 \\ primitive \end{pmatrix} \right)$$

 $\left(\begin{array}{c} \mathsf{This is Already} \\ A \ REPRESENTATION \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{Po} \dots \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{Po} \dots \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{Po} \dots \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{Po} \dots \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{Po} \dots \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{Po} \dots \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{Po} \dots \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{Po} \dots \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{Po} \dots \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{Po} \dots \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{orreps} & \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{orreps} & \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{orrested} & \mathsf{graph} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{irreps} & \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{orreps} & \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{orreps} & \mathsf{fs} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{orrested} & \mathsf{graph} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{orrested} & \mathsf{graph} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{orrested} & \mathsf{graph} \end{array}\right)$
 $\left(\begin{array}{c} \mathsf{G} & \mathsf{fs} \end{array}\right)$

Running example:
$$D_{5} = \left(\begin{pmatrix} \mathcal{E} & 0 \\ 0 & \mathcal{E}^{-1} \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \middle| \begin{array}{c} \mathcal{E}^{6} = 1 \\ primihie \end{pmatrix}\right)$$

 $\begin{array}{c} This \text{ is Already} \\ A REPRESENTATION \\ \hline \\ DENOTE BY V. \end{array}$
 $\begin{array}{c} G \text{ irreps } \mathcal{P}_{0} \dots \mathcal{P}_{5} \end{array}$
 $\begin{array}{c} G \text{ on form its } \underline{McKay} \quad \underline{guiver} & (an \text{ onvented } graph) \\ \hline \\ VERTICES : & \mathcal{P}_{0} \dots \mathcal{P}_{5} \end{array}$
 $\begin{array}{c} F \text{ on form its } \frac{McKay}{\mathcal{P}_{i}} \quad \underline{guiver} & (an \text{ onvented } graph) \\ \hline \\ VERTICES : & \mathcal{P}_{0} \dots \mathcal{P}_{5} \end{array}$
 $\begin{array}{c} F \text{ on form its } \frac{1}{\mathcal{P}_{i}} \\ F \text{ on form its } \frac{1}{\mathcal{P}_{i}} \\ \hline \\ F \text{ on form its } \\ \hline \\ F \text{ on form its } \frac{1}{\mathcal{P}_{i}} \\ \hline \\ F \text{ on form its } \frac{1}{\mathcal{P}_{i}} \\ \hline \\ F \text{ on form its } \frac{1}{\mathcal{P}_{i}} \\ \hline \\ F \text{ on form its } F \text{ on form its } 1 \\ \hline \\ F \text{ on form its } 1 \\ \hline \\ F \text{ on form its } 1 \\ \hline \\ F \text{ on form its } 1 \\ \hline \\ F \text{ on form its } 1 \\ \hline \\ F \text{ on form its } 1 \\ \hline \\ F \text{ on$

Remark: When we ignore the trivial representation, we obtain exactly the graph D5 from the first slide!

The same is true for the rest of the As, Ds & Es.

Geometric POV: Each subgroup of SL
$$(2, \mathbb{C})$$
 acts on \mathbb{C}^2 by multiplication.
We form the guotient \mathbb{C}^2/Γ , which is an affine algebraic surface.
by We can write down its equation!

Geometric Pov: Each subgroup of SL
$$(2, \mathbb{C})$$
 acts on \mathbb{C}^2 by multiplication.
We form the guotient \mathbb{C}^2/Γ , which is an affine algebraic surface.
by We can write down its equation!

Ex:
$$D_5$$
 leads to the hypersurface singularity given by:
 $(n^2 + y^2 \mp \mp^4 = 0) \subset \mathbb{C}^3$ band to study!

Geometric Por Each subgroup of SL
$$(2, \mathbb{C})$$
. acts on \mathbb{C}^2 by multiplication.
We form the guotient $\mathbb{C}^2/_{11}$, which is an affine algebraic surface.
(b) We can write down its equation!
Ex: D_5 -leads to the hypersurface singularity given by:
 $(x^2 + y^2 + z^4 = 0) \subset \mathbb{C}^3$. In hard to study!
There are two ways to get rid of such points in geometry:
Harder to control
geom. properties
of fibres
- neutring space
nucy not be
compact

In the case of D5:

Its minimal resolution Y looks like

In the case of D5:

Its minimal resolution Y looks like

We call ei EXCEPTIONAL.

In the case of D5:

Its minimal resolution Y looks like

PUNCHLINE: This bijection is called the McKay CORRESPONDANCE.
and it holds for all
$$\Gamma' \subset SL(2, \mathbb{C})$$
 finite:
 $\begin{cases} f_{i} \text{ nontrivial irrep} \end{cases} \xrightarrow{1:1} \left(exceptional divisors \\ f \Gamma \end{array} \right) \xrightarrow{f' \Gamma} \left(f \Gamma \right) \xrightarrow{f' \Gamma} \right)$
ALGEBRA

GEOMETRY

Beyond SL(2, C)?

Beyond SL (2, C)?

DIMENSION 3. Let
$$\Gamma \subset SL(3, \mathbb{C})$$
 be finite.
Example: $\Pi = \frac{1}{6}(1,2,3) = \begin{cases} \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^3 \end{pmatrix} \begin{vmatrix} \varepsilon^6 = 1 \\ \varepsilon^6 = 1 \end{cases} \subset SL(3, \mathbb{C}).$

On the algebraic side: I has 6 irreps po ... p5, all of dim 1.

$$\begin{array}{ccc} \rho_{i}: & \rho \rightarrow \mathbf{C} \\ \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon^{2} & 0 \\ 0 & 0 & \varepsilon^{3} \end{pmatrix} \longmapsto \varepsilon^{i} , i = 0.5. \end{array}$$

Beyond SL (2, C)?

DIMENSION 3. Let
$$\Gamma \subset SL(3, \mathbb{C})$$
 be finite.
Example: $\Pi = \frac{1}{6}(1,2,3) = \begin{cases} \begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^3 \end{pmatrix} \begin{vmatrix} \varepsilon^6 = 1 \\ \varepsilon^6 = 1 \end{pmatrix} \subset SL(3, \mathbb{C}).$

On the algebraic side: Γ has 6 irreps po ... ps, all of dime 1. $P:: \Gamma \rightarrow \Gamma$

$$\begin{pmatrix} \varepsilon & 0 & 0 \\ 0 & \varepsilon^2 & 0 \\ 0 & 0 & \varepsilon^3 \end{pmatrix} \mapsto \varepsilon^i , i = 0.5.$$

In particular,
$$V = f_1 \oplus f_2 \oplus f_3$$

 $f_i \otimes f_j = \varepsilon^{i+j} = f_{i+j} \pmod{6}$

What about the geometry side? Want to study the variety. $X = \frac{D^3}{\Gamma} \quad (\text{for } \Gamma \text{ in the ex})$

Again, you can write its equations and study the singularities:

What about the geometry side? Want to study the variety. $X = \frac{C^3}{\Gamma} \quad (\text{for } \Gamma \text{ in the ex})$

Again, you can write its equations and study the singularities:

What's new to this case?

- 1. Interior lattice points can be marked w/the same irrep (eg2)
- z. Interior live seguents can le martied W/more than one irrep (eg 3 & 9)
- 3. The marking of an interior line segment is not determined by the hyperplane containing it (eg 3 & 9)
- 4. The marking of an interior lattice point is not determined by the geometry of the surface. (eg 2 & 5)
- 5. The Eulernumber of an irreducible component of the exceptional divisor is not bounded by 6 from above.

Thank you for your attention!