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My background

▶ BSc Mathematics - University of Cyprus (2013 - 2017)

▶ MSc Mathematics - University of St Andrews (2017 - 2018)

▶ Worked at a market research and consulting firm in Cyprus (2018 - 2019)

▶ PhD Mathematics (research on computational algebra) - University of St

Andrews (2019 - 2023)

My research is focused on practical computation with finitely presented

semigroups and monoids. I was interested in developing efficient algorithms for

problems in semigroup theory.
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Semigroups

A semigroup is a set S together with

an associative binary operation on S,

i.e. an operation ∗ : S × S → S such

that

(x ∗ y) ∗ z = x ∗ (y ∗ z)

for all x, y, z ∈ S.

▶ (N,+), (Z,+)

▶ Groups

▶ The set TX of all functions from a

set X to itself with operation the

composition of functions.
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i.e. an operation ∗ : S × S → S such

that

(x ∗ y) ∗ z = x ∗ (y ∗ z)

for all x, y, z ∈ S.

A monoid M is a semigroup with an

identity element e ∈ M such that

e ∗ m = m ∗ e = m

for all m ∈ M .
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▶ (N ∪ {0},+)



Why we are interested in semigroups

▶ In many cases mathematicians are interested in the set TX of all functions

from a set X to itself which is a semigroup.

▶ Applications in other areas of mathematics (PDEs, dynamical systems)

▶ Applications in biology

▶ Closely related to theoretical computer science (formal language theory,

automata theory)

▶ They are fun.



The free monoid A∗

▶ A is a non-empty set, an alphabet

elements of A∗ are finite sequences of

elements of A called words

the operation is the concatenation of

words

the empty word is the identity element

▶ A = {a, b, c}

aab = a2b
abcaba

(bc) ∗ (aba) = bcaba
a

(ε)(bc) = bc = (bc)(ε)
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Monoids defined by presentations

A presentation for a monoid M is a pair ⟨A | R⟩, where:

▶ A is a non-empty set, an alphabet

elements of M are represented by words

in A∗

R is a set of relations

two words represent the same element of

M if we can get from one to the other by

applying the relations in R.

▶ A = {a, b, c}

aab = a2b
abcaba

R = {ba = ac, cbc = cb}

acbc = acb = acb = bab
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The word problem for monoids

Suppose that ⟨A | R⟩ is a presentation for a monoid M . Does there exist an

algorithm deciding whether or not two words u and v over the alphabet A
represent the same element of M?

This problem is undecidable in general...

...but almost always decidable.



Small overlap monoids

▶ A family of monoids defined by presentations that satisfy a simple

combinatorial condition, called C(m), m ∈ N.

▶ Small overlap monoids that satisfy C(m) with m ≥ 3 are infinite and have

decidable word problem.

▶ Small overlap monoids are the ‘‘generic’’ monoids defined by

presentations.



Small overlap conditions

Let M be the monoid defined by ⟨A | R⟩.

A piece is any word in A∗ that appears as a factor in two distinct relation words

in R or as a factor in two different places (possibly overlapping) in one relation

word in R. The empty word ε is a piece by convention.

Example:

P = ⟨a, b, c,d, e, f , g | a3ea2 = abcd, ef = dg⟩

The pieces of P are:

▶ ε (by convention)

▶ a: aaaeaa and abcd

▶ d: abcd and dg

▶ e: a3ea2 and ef

▶ a2: aaaeaa, aaaeaa



The C(n) condition for monoids

A presentation P = ⟨A | R⟩ satisfies condition C(n), n ∈ N if no relation word

in R can be written as a product of strictly less than n pieces.

If P satisfies C(n) for some n ∈ N then it satisfies C(k) for all k ≤ n.

Example

The set of pieces of ⟨a, b, c,d, e, f , g | a3ea2 = abcd, ef = dg⟩ is

P = {ε,a,d, e,a2}.

aaaeaa︸ ︷︷ ︸
4 pieces

aaaabcdaaaef aaadg

The presentation satisfies C(4).



The word problem in C(3) and C(4) monoids

Theorem (Remmers 1971)

The word problem is decidable for monoids defined by presentations satisfying

the small overlap condition C(3).

Theorem (Kambites 2009)

For every monoid presentation satisfying C(4), there exists an algorithm which

solves the corresponding word problem in time linear in the lengths of the input

words.

We want to have an efficient algorithm that will determine if a presentation

satisfies C(3) or C(4).



Deciding if a presentation satisfies C(m)

We can use a data structure called suffix tree, in order to find the pieces of a

presentation.

Suffix tree for w = banana$

▶ each leaf node corresponds

to a suffix of w

▶ if v is a prefix of the label of a

path from the root to an

internal node, then v occurs

more than once in w

▶ it can be constructed in time

linear to the length of w
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PhD experience

Figure: https://theawkwardyeti.com/comic/burden/.

https://theawkwardyeti.com/comic/burden/


Dealing with self doubt during your PhD

▶ If you have been accepted into a PhD program, you have the skills to

finish it

▶ You might feel like your work is less important/easier than everyone else’s

People talk about their work in seminars and conferences

You know your own work very well

▶ You can ask people you trust for feedback (and you should believe them

when they say something good!)

▶ You don’t need to be the best, you need to be interested in bringing

something new to the table



Thank you!


